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Introduction

I Matrix: the movie

I Matrix: the R package :

I Package Matrix: a recommended R package since R 2.9.0

I Infrastructure for other packages for several years, notably
lme41

I CRAN nowadays lists direct “reverse dependencies”:

1lme4 := (Generalized–) (Non–) Linear Mixed Effect Modelling,
(using S4 | re-implemented from scratch the 4th time)

(reverse) Dependencies on Matrix

On June 26, 2008 (> one year ago), Matrix was not yet
recommended, and had the following CRAN dependency graph:

Matrix

FTICRMS

arm

arules cba glmnet klin

languageR

lme4

mlmRev qgen

ramps spdep surveyNG svcm systemfit tm tpr tsDyn

arulesSequences PARccs MEMSS RLRsim asuR sdtalt BARD DCluster svcR micEcon sampleSelection openNLP

31 nodes with 34 edges

 ancestors("Matrix", cranDeps)

2008−06−26

i.e., 14 + 1 directly dependent packages.



Dependencies on Matrix – 2009-07
Today, quite a few more packages depend on Matrix explicitly:
CRAN → Packages → Matrix displays the following

http://cran.r-project.org/web/packages/Matrix/

Matrix: Sparse and Dense Matrix Classes and Methods

Classes and methods for dense and sparse matrices and operations on them using Lapack and

SuiteSparse.

Version: 0.999375-29

Priority: recommended

Depends: R (≥ 2.9.0), stats, methods, utils, lattice

Imports: graphics, lattice, grid, stats

Enhances: graph, SparseM

Author: Douglas Bates and Martin Maechler

Reverse dependencies:

Reverse

depends:

FAiR, FTICRMS, GOSim, MCMCglmm, Metabonomic, arm, arules, glmnet, klin,

languageR, lme4, mlmRev, pedigreemm, qgen, ramps, spdep, surveyNG, svcm,

systemfit, tpr, tsDyn

Reverse

imports:
arules, cba

Reverse

suggests:

R.matlab, RSiena, Rcsdp, blockmodeling, classGraph, e1071, gmodels, igraph,

rattle, spam, survey

Reverse

enhances:
Rcplex, Rcsdp
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Dependencies on Matrix — 2009-07 — Summary

1. After one year, we have 22 (up from 15) packages depending
on Matrix explicitly, plus another 12 “suggest” or “enhance”
it.

2. Notably glmnet, Trevor Hastie’s favorite in yesterday’s
keynote.

3. Most important one: lme4 and its dependencies

Intro to Sparse Matrices in R package Matrix

I The R Package Matrix contains dozens of matrix classes and
hundreds of method definitions.

I Has sub-hierarchies of denseMatrix and sparseMatrix.

I Very basic intro in some of sparse matrices:



simple example — Triplet form
The most obvious way to store a sparse matrix is the so called
“Triplet” form; (virtual class TsparseMatrix in Matrix):
> A <- spMatrix(10, 20, i = c(1,3:8),
+ j = c(2,9,6:10),
+ x = 7 * (1:7))
> A # a "dgTMatrix"

10 x 20 sparse Matrix of class "dgTMatrix"

[1,] . 7 . . . . . . . . . . . . . . . . . .

[2,] . . . . . . . . . . . . . . . . . . . .

[3,] . . . . . . . . 14 . . . . . . . . . . .

[4,] . . . . . 21 . . . . . . . . . . . . . .

[5,] . . . . . . 28 . . . . . . . . . . . . .

[6,] . . . . . . . 35 . . . . . . . . . . . .

[7,] . . . . . . . . 42 . . . . . . . . . . .

[8,] . . . . . . . . . 49 . . . . . . . . . .

[9,] . . . . . . . . . . . . . . . . . . . .

[10,] . . . . . . . . . . . . . . . . . . . .

Less didactical, slighly more recommended: A1 <-
sparseMatrix(.....)

simple example – 2 –

> str(A) # note that *internally* 0-based indices (i,j) are used

Formal class ’dgTMatrix’ [package "Matrix"] with 6 slots

..@ i : int [1:7] 0 2 3 4 5 6 7

..@ j : int [1:7] 1 8 5 6 7 8 9

..@ Dim : int [1:2] 10 20

..@ Dimnames:List of 2

.. ..$ : NULL

.. ..$ : NULL

..@ x : num [1:7] 7 14 21 28 35 42 49

..@ factors : list()

> A[2:7, 12:20] <- rep(c(0,0,0,(3:1)*30,0), length = 6*9)
> A >= 20 ## <--- what result do you expect ?

simple example – 3 –

> A >= 20 # -> logical sparse; nice show() method

10 x 20 sparse Matrix of class "lgTMatrix"

[1,] . . . . . . . . . . . . . . . . . . . .

[2,] . . . . . . . . . . . . . | | | . . . .

[3,] . . . . . . . . . . . . . . | | | . . .

[4,] . . . . . | . . . . . . . . . | | | . .

[5,] . . . . . . | . . . . | . . . . | | | .

[6,] . . . . . . . | . . . | | . . . . | | |

[7,] . . . . . . . . | . . | | | . . . . | |

[8,] . . . . . . . . . | . . . . . . . . . .

[9,] . . . . . . . . . . . . . . . . . . . .

[10,] . . . . . . . . . . . . . . . . . . . .

sparse compressed form

Triplet representation: easy for us humans, but can be both made
smaller and more efficient for (column-access heavy) operations:
The “column compressed” sparse representation:

> Ac <- as(t(A), "CsparseMatrix")
> str(Ac)

Formal class ’dgCMatrix’ [package "Matrix"] with 6 slots

..@ i : int [1:30] 1 13 14 15 8 14 15 16 5 15 ...

..@ p : int [1:11] 0 1 4 8 12 17 23 29 30 30 ...

..@ Dim : int [1:2] 20 10

..@ Dimnames:List of 2

.. ..$ : NULL

.. ..$ : NULL

..@ x : num [1:30] 7 30 60 90 14 30 60 90 21 30 ...

..@ factors : list()

Column index slot j
replaced by a column pointer slot p.



R Package Matrix: Compelling reasons for S4

1. Classes for Matrices: well-defined inheritance hierarchies:

1.1 Content kind: Classes dMatrix, lMatrix, nMatrix,
(iMatrix, zMatrix) for contents of double, logical, pattern
(and not yet integer and complex) Matrices, where nMatrix
only stores the location of non-zero matrix entries (where as
logical Matrices can also have NA entries)

1.2 sparsity: denseMatrix, sparseMatrix
1.3 structure: general, triangular, symmetric, diagonal Matrices

2. Inheritance: Visualisation via graphs

3. Multiple Inheritance (of classes)

4. Multiple Dispatch (of methods)

Multiple Dispatch in S4 .... for Matrix operations

Methods for ”Matrix”-matrices: Often 2 matrices involved..

1. x %*% y

2. crossprod(x,y) — xᵀy

3. tcrossprod(x,y) — xyᵀ

4. x + y — "Arith" group methods

5. x <= y — "Compare" group methods

and many many more.

S4 >> S3

I S4 - multiple dispatch: Find method according to classes of
both (or more) arguments.

I S3 - single dispatch: e.g., ”ops.Matrix”: only first argument
counts.

Goals of Matrix package

1. interface to lapack= state-of-the-art numerical linear
algebra for dense matrices

I making use of special structure for symmetric or triangular
matrices (e.g. when solving linear systems)

I setting and keep such properties alows more optimized code in
these cases.

2. Sparse matrices for large designs: regression, mixed models,
etc

3. . . . . . . [omitted in this talk]

Hence, quite a few different classes for matrices.

many Matrix classes . . .
> library(Matrix)
> length(allCl <- getClasses("package:Matrix"))

[1] 98

> ## Those called "...Matrix" :
> length(M.Cl <- grep("Matrix$",allCl, value = TRUE))

[1] 70

i.e., many . . . , each inheriting from root class ”Matrix”
> str(subs <- showExtends(getClassDef("Matrix")@subclasses,
+ printTo=FALSE))

List of 2

$ what: chr [1:76] "compMatrix" "triangularMatrix" "dMatrix" "iMatrix" ...

$ how : chr [1:76] "directly" "directly" "directly" "directly" ...

> ## even more... : All those above and these in addition:
> subs$what[ ! (subs$what %in% M.Cl)]

[1] "Cholesky" "pCholesky" "BunchKaufman" "pBunchKaufman"

. . . . . . a bit messy . . .



3-way Partitioning of “Matrix space”

Logical organization of our Matrices: Three ( 3 ) main “class
classifications” for our Matrices, i.e.,
three “orthogonal” partitions of “Matrix space”, and every Matrix
object’s class corresponds to an intersection of these three
partitions.
i.e., in R ’s S4 class system: We have three independent
inheritence schemes for every Matrix, and each such Matrix class is
simply defined to contain three virtual classes (one from each
partitioning scheme), e.g,

setClass("dgCMatrix",
contains= c("CsparseMatrix", "dsparseMatrix", "generalMatrix"),
validity= function(..) .....)

3-way Partitioning of Matrix space — 2

The three partioning schemes are

1. Content type: Classes dMatrix, lMatrix, nMatrix,
(iMatrix, zMatrix) for entries of type double, logical,
pattern (and not yet integer and complex) Matrices.
nMatrix only stores the location of non-zero matrix entries
(where as logical Matrices can also have NA entries!)

2. structure: general, triangular, symmetric, diagonal Matrices

3. sparsity: denseMatrix, sparseMatrix

First two schemes: a slight generalization from lapack for dense
matrices.

3D space of Matrix classes

three-way partitioning of Matrix classes visualized in 3D space,
dropping the final Matrix, e.g., "d" instead of "dMatrix":
> d1 <- c("d", "l", "n")
> d2 <- c("general", "symmetric", "triangular", "diagonal")
> d3 <- c("dense", c("Csparse", "Tsparse", "Rsparse"))
> clGrid <- expand.grid(dim1 = d1, dim2 = d2, dim3 = d3, KEEP.OUT.ATTRS = FALSE)
> clGr <- data.matrix(clGrid)
> library(scatterplot3d)
used for visualization:
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3-fold classification — Matrix naming scheme

1. “Actual” classes: Matrix objects are of those; the above
“points in 3D space”

2. Virtual classes: e.g. the above coordinate axes categories.
Superclasses of actual ones
cannot have objects of, but —importantly— many methods
for these virtual classes.

Actual classes follow a “simple” terse naming convention:
> str(M3cl <- grep("^...Matrix$",M.Cl, value = TRUE))

chr [1:47] "corMatrix" "ddiMatrix" "dgCMatrix" "dgeMatrix" ...

> substring(M3cl,1,3)

[1] "cor" "ddi" "dgC" "dge" "dgR" "dgT" "dpo" "dpp" "dsC" "dsp" "dsR" "dsT"

[13] "dsy" "dtC" "dtp" "dtr" "dtR" "dtT" "ldi" "lgC" "lge" "lgR" "lgT" "lsC"

[25] "lsp" "lsR" "lsT" "lsy" "ltC" "ltp" "ltr" "ltR" "ltT" "ngC" "nge" "ngR"

[37] "ngT" "nsC" "nsp" "nsR" "nsT" "nsy" "ntC" "ntp" "ntr" "ntR" "ntT"

> M3cl <- M3cl[M3cl != "corMatrix"] # corMatrix not desired in following



3D space of Matrix classes
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Matrix 3d space: filled (2)

dim1

di
m

2

di
m

3

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

d l n
general

symmetric
triangular

diagonal

dense

Csparse

Tsparse

Rsparse

ddi

dgC

dge

dgR

dgT

dpodpp

dsC

dsp

dsR

dsT

dsy

dtC

dtpdtr

dtR

dtT

Matrix 3d space: filled (3)
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Matrix 3d space: filled (4)
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Spatially Dependent Errors — SAR(1)
Regression with spatially dependent errors; observations at
locations i, i = 1, . . . , n, n in the thousands, possibly 100’000s.

Simultaneous Autoregression

y = Xβ + u where u = λWu+ ε. (1)

I W : matrix (Wij) of “distance-based contiguities” of
locations i and j (Wii ≡ 0).

I λ: SAR(1) parameter; estimate via MLE, (β profiled out).

I u ∼ N (
0, σ2(I − λW)−1(I − λWᵀ)−1

)
I For log likelihood, need to compute determinant
|I − λW| = (−λ)n

∣∣−W + 1
λI

∣∣ for many λ.

Compute Cholesky / Determinant of A+ ρI for large sparse
symmetric A:

=⇒ Fast Cholesky Update

SAR(1) – fast Likelihood from Cholesky Update

Data provided by Roger Bivand, as a relevant test case:
> data(USCounties, package="Matrix")
> dim(USCounties)

[1] 3111 3111

> (n <- ncol(USCounties))

[1] 3111

> IM <- .symDiagonal(n)
> nWC <- -USCounties
> set.seed(1)
> rho <- sort(runif(50, 0, 1)) ## rho = 1 / lambda
and now compute determinant(A) =: |A|

|I − λW| ∝
∣∣∣∣−W +

1
λ
I

∣∣∣∣ for manyλ ′s. (2)

SAR(1) – Cholesky Update – 2 –
> ## Determinant : Direct Computation
> system.time(MJ <- sapply(rho, function(x)
+ determinant(IM - x * USCounties, logarithm = TRUE)$modulus))

user system elapsed

3.640 0.124 4.062

> ## Determinant : "high-level" Update of the Cholesky {Simplicial / Supernodal}
> C1 <- Cholesky(nWC, Imult = 2)
> system.time(MJ1 <- n * log(rho) +
+ sapply(rho, function(x) c(determinant(update(C1, nWC, 1/x))$mod)))

user system elapsed

0.692 0.012 0.746

> stopifnot(all.equal(MJ, MJ1))
> C2 <- Cholesky(nWC, super = TRUE, Imult = 2) ## <<-- "Supernodal"
> system.time(MJ2 <- n * log(rho) +
+ sapply(rho, function(x) c(determinant(update(C2, nWC, 1/x))$mod)))

user system elapsed

0.760 0.060 0.888

SAR(1) – Cholesky Update – 3 –
> stopifnot(all.equal(MJ, MJ2))
> ## Determinant : "low-level" Update of the Cholesky {Simplicial / Supernodal}
> system.time(MJ3 <- n*log(rho) + Matrix:::ldetL2up(C1, nWC,1/rho))

user system elapsed

0.400 0.008 0.425

> stopifnot(all.equal(MJ, MJ3))
> system.time(MJ4 <- n*log(rho) + Matrix:::ldetL2up(C2, nWC,1/rho))

user system elapsed

0.404 0.008 0.416

> stopifnot(all.equal(MJ, MJ4))

Findings:

1. Using Cholesky update: order of magnitude faster

2. Simplicial (super= FALSE) ↔ Supernodal (super= TRUE) : no
big difference here

3. An even faster method for Det(Chol(.)) yields another 50%
speed.



Mixed Modelling - (RE)ML Estimation in pure R

In (linear) mixed effects, the evaluation of the (RE) likelihood or
equivalently deviance, needs repeated Cholesky decompositions of

UθUθ
ᵀ + I, (3)

for many θ values (= the relative variance components) and (often
very large), very sparse matrix Uθ where only the non-zeros of U
depend on θ, i.e., the sparsity pattern is given (by the
observational design).
Sophisticated (fill-reducing) Cholesky done in two phases:

1. “symbolic” decomposition: Determine the non-zero entries of
L (LLᵀ = UUᵀ + I),

2. numeric phase: compute these entries.
Phase 1: typically takes much longer; only needs to happen
once.
Phase 2: “update the Cholesky Factorization”

Who’s the best liked prof at ETH?

I Private donation for encouraging excellent teaching at ETH

I Student union of ETH Zurich organizes survey to award prizes:
Best lecturer — of ETH, and of each of the 14 departments.

I Smart Web-interface for survey: Each student sees the names
of his/her professors from the last 4 semesters and all the
lectures that applied.

I ratings in {1, 2, 3, 4, 5}.
I high response rate

Who’s the best prof — data

> md <- within(read.csv("~/R/MM/Pkg-ex/lme4/puma-lmertest.csv"), {
+ s <- factor(s) # Student_ID
+ d <- factor(d) # Lecturer_ID ("d"ozentIn)
+ dept <- factor(dept)
+ service <- factor(service)
+ studage <- ordered(studage)## *ordered* factors
+ lectage <- ordered(lectage) })
> str(md)

’data.frame’: 73421 obs. of 7 variables:

$ s : Factor w/ 2972 levels "1","2","3","4",..: 1 1 1 1 2 2 3 3 3 3 ...

$ d : Factor w/ 1128 levels "1","6","7","8",..: 525 560 832 1068 62 406 3 6 19 75 ...

$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1 1 1 ...

$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2 1 2 2 1 1 1 1 1 1 ...

$ service: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 1 ...

$ dept : Factor w/ 15 levels "1","2","3","4",..: 15 5 15 12 2 2 14 3 3 3 ...

$ y : int 5 2 5 3 2 4 4 5 5 4 ...

Modelling the ETH teacher ratings

Model: The rating depends on

I students (s) (rating subjectively)

I teacher (d) – main interest

I department (dept)

I “service” lecture or “own department student”, (service:
0/1).

I semester of student at time of rating (studage∈ {2, 4, 6, 8}).

I how many semesters back was the lecture (lectage).

Main question: Who’s the best prof?
Hence, for “political” reasons, want d as a fixed effect.



Model for ETH teacher ratings
Want d (“teacher ID”, ≈ 1000 levels) as fixed effect.
Consequently, in

y = Xβ +Zb+ ε

have X as n× 1000 (roughly), Z as n× 5000, n ≈ 70′000.
> fm0 <- lmer2(y ~ d + dept*service + studage + lectage + (1|s),
+ data = md, sparseX = TRUE)
sparseX = TRUE: sparse X (fixed effects) in addition to the
indispensably sparse Z (random effects).
Unfortunately: Here, the above “sparseX - lmer” ends in
Error ... Cholmod error ’not positive definite’ at file:../Cholesky/......

Good News: Newly in Matrix:

sparse.model.matrix()

I which lmer() can use,
I or you can use for “truly sparse” least squares (i.e. no

intermediately dense design matrix)
I something we plan to provide in Matrix 1.0-0.

Summary

I Recommended R package ”Matrix”

I Sparse Matrices: in increasing number of applications

I S4 classes and methods are the natural implementation tools

I lme4 is going to contain an alternative “pure R” version of
ML and REML, you can pass to nlminb() (or optim() if you
must :-). UseRs can easily extend these R functions to more
flexible models or algorithms.

I Matrix 1.0-0

1. will happen
2. will contain sparse.model.matrix()
3. will contain truly sparse lm(*, sparse=TRUE)

That’s all folks — with thanks for your attention!


