
Exploiting sparsity in model matrices

Douglas Bates and Martin Maechler

Department of Statistics
University of Wisconsin – Madison U.S.A.

Seminar für Statistik
ETH Zurich Switzerland

(bates|maechler)@R-project.org (R-Core)

DSC2009, Copenhagen
July 14, 2009

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 1 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 2 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 2 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 2 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 2 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 2 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 2 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 2 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 3 / 45

In case it all starts to blur

Model matrices with many columns typically have some degree of
sparsity.

Regularization is important in combination with many columns.
Updating a factorization is much more efficient when optimizing a
regularization parameter.

The complexity of the factorization depends on the order of the
columns. Need to consider carefully the parameterization (contrasts)
and the order of terms.

Mixed-effects models are regularization problems that benefit greatly
from sparse matrix methods. They are implicit in lme4.

A new function sparse.model.matrix() is available in the Matrix
package for non-implicit sparse model matrix construction.

These slides are available at
http://Matrix.R-forge.R-project.org/slides/.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 4 / 45

http://Matrix.R-forge.R-project.org/slides/

Model matrices and sparsity

In statistical models the effects of the covariates on the response are
often expressed, directly or indirectly, through model matrices. A
common idiom in a model fitting function using a formula argument
is a call to model.frame() followed by a call to model.matrix().

Many users feel frustrated that R does not transparently handle very
large model matrices, failing to realize that a naive decomposition of
an n× p dense model matrix requires O(np2) flops. Large values of p
are thus particularly problematic.

Frequently, large values of p are a consequence of incorporating
factors with a large number of levels in the model. A factor with k
levels generates at least k − 1 columns as do any interactions with
such a factor.

The model matrix columns are generated from the indicator columns
for the factor, which are very sparse. The greater the number of
levels, the more sparse the indicators become.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 5 / 45

Sparse model matrices and regularization

As stated at useR!2009, large, sparse model matrices usually require
some amount of regularization for computationally feasible evaluation
of coefficients and fitted values.

Frequently the regularization parameter(s) are chosen to optimize a
criterion, requiring evaluation of the criterion for many different trial
values of the regularization parameter(s).

Usually the repeated evaluations of the criterion require
decomposition of a matrix with a constant structure (including the
positions of the non-zeros) and varying numeric values.

The sparse Cholesky factorization is ideally suited to problems
requiring many evaluations of a decomposition of a matrix with
constant structure and varying numeric values.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 6 / 45

The sparse Cholesky factorization

The Matrix package for R provides sparse matrix methods, including
the sparse Cholesky, by interfacing to Tim Davis’ cholmod library of
C functions.

This C library provides separate functions for the symbolic
factorization, including determining a fill-reducing permutation, and
the numeric factorization.

The symbolic factorization determines the positions of the non-zeros
in the result. The numeric factorization simply evaluates the numeric
values. Generally it is much faster than the symbolic factorization.

There are many beautiful mathematical results associated with sparse
matrix operations. See Tim Davis’ 2007 SIAM book for some of these
results.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 7 / 45

Variations of the sparse Cholesky

In the Matrix package we use the formulation from the cholmod C
library. Sparse matrices may be entered in the triplet formulation but
operations are usually performed on the compressed-column
representation (the CsparseMatrix class).

If A is a positive-definite symmetric sparse matrix, the sparse
Cholesky factorization consists of a permutation matrix P and a
lower triangular matrix L such that

LLᵀ = PAP ᵀ.

Note that L is the left factor (statisticians often consider the right
factor, R = Lᵀ). The permutation P is stored (as a vector) within
the factorization.

There are two variations: the LDL factorization, where the lhs is
LDLᵀ (L unit lower triangular; D diagonal), and a supernodal LLᵀ

decomposition, which is a sparse/dense hybrid that collapses columns
with similar structure to a “supernode” of the graph representation.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 8 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 9 / 45

Definition of linear mixed models

A linear mixed model consists of two random variables: the
n-dimensional response, Y , and the q-dimensional random effects, B.
We observe the value, y, of Y ; we do not observe the value of B.

The probability model defines one conditional and one unconditional
distribution

(Y |B = b) ∼ N
(
Zb+Xβ, σ2In

)
, B ∼ N (0,Σθ) ,

which depend on parameters β, θ and σ.

Although the dimension of Σθ can be huge, the dimension of the
variance-component parameter vector, θ, is usually very small.

The model specification determines the n× q model matrix Z
(generated from indicator columns and typically very sparse), the
n× p model matrix X, and the way in which θ generates Σθ.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 10 / 45

Properties of Σθ; generating it

Because it is a variance-covariance matrix, the q × q Σθ must be
symmetric and positive semi-definite, which means, in effect, that it
has a “square root” — there must be another matrix that, when
multiplied by its transpose, gives Σθ.

We never really form Σθ; we always work with the relative covariance
factor, Λθ, defined so that

Σθ = σ2ΛθΛ
ᵀ
θ

where σ2 is the same variance parameter as in (Y |B = b).

We also work with a q-dimensional “spherical” or “unit”
random-effects vector, U , such that

U ∼ N
(
0, σ2Iq

)
, B = ΛθU ⇒ Var(B) = σ2ΛθΛ

ᵀ
θ = Σθ.

The linear predictor expression becomes

Zb+Xβ = ZΛθ u+Xβ = Uθ u+Xβ

where Uθ = ZΛθ.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 11 / 45

The conditional mode, ũθ,β

Although the probability model is defined from (Y |U = u), we
observe y, not u (or b) so we want to work with the other conditional
distribution, (U |Y = y).

The joint distribution of Y and U is Gaussian with density

fY,U (y,u) = fY|U (y|u) fU (u)

=
exp(− 1

2σ2 ‖y −Xβ −Uθ u‖2)
(2πσ2)n/2

exp(− 1
2σ2 ‖u‖2)

(2πσ2)q/2

=
exp(−

[
‖y −Xβ −Uθ u‖2 + ‖u‖2

]
/(2σ2))

(2πσ2)(n+q)/2

The mode, ũθ,β, of the conditional distribution (U |Y = y) (also the
mean in this case) is

ũθ,β = arg min
u

[
‖y −Xβ −Uθ u‖2 + ‖u‖2

]
Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 12 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 13 / 45

Minimizing a penalized sum of squared residuals

An expression like ‖y −Xβ −Uθ u‖2 + ‖u‖2 is called a penalized
sum of squared residuals because ‖y −Xβ −Uθ u‖2 is a sum of
squared residuals and ‖u‖2 is a penalty on the size of the vector u.

Determining ũθ,β as the minimizer of this expression is a penalized
least squares (PLS) problem. In this case it is a penalized linear least
squares problem that we can solve directly (i.e. without iterating).

One way to determine the solution is to rephrase it as a linear least
squares problem for an extended residual vector

ũθ,β = arg min
u

∥∥∥∥[y −Xβ0

]
−
[
Uθ
Iq

]
u

∥∥∥∥2

This is sometimes called a pseudo-data approach because we create
the effect of the penalty term, ‖u‖2, by adding “pseudo-observations”
to y and to the predictor.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 14 / 45

Solving the linear PLS problem

The conditional mean satisfies the equations

(Uᵀ
θ Uθ + Iq)ũθ,β = Uᵀ

θ (y −Xβ)

This would be interesting but not very important were it not for the
fact that we actually can solve that system for ũθ,β even when its
dimension, q, is very, very large.

Recall that Uθ = ZΛθ. Because Z is generated from indicator
columns for the grouping factors, it is sparse. Uθ is also very sparse.

The fill-reducing permutation, P , and the structure of the Cholesky
factor, L, are determined from Uθ(0) where θ(0) is the starting value.
For subsequent values of θ the update of the factor Lθ satisfying

LθL
ᵀ
θ = P

(
Uᵀ
θUθ + Iq

)
P ᵀ

is direct from Uθ. (One of the cholmod functions does the update,
including virtually adding a multiple of the identity, from the sparse,
rectangular Uθ.) From Lθ we solve for ũθ,β.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 15 / 45

What do we mean by “large” nowadays?

Harold Doran recently fit a linear mixed model to the annual
achievement test results for the last 4 years in one of the United
States. There were n = 5212017 observations on a total of
n1 = 1876788 students and n2 = 47480 teachers.

The models had simple, scalar random effects for student and for
teacher resulting in q = 1924268 (i.e. nearly 2 million!)

There were a total of p = 29 fixed-effects parameters.

At present Harold needed to fit the model to a subset and only
evaluate the conditional means for all the students and teachers but
we should be able to get around that limitation and actually fit the
model to all these responses and random effects.

I don’t know of other software that can be used to fit a model this
large.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 16 / 45

Size of the decomposition for this large model

Memory usage in such a model is dominated by Cholesky factor,
L(θ).

In this case the x slot is itself over 1GB in size (i slot > 0.5 GB).

These are close to an inherent limit on atomic R objects (the range of
an index into an atomic object cannot exceed 231

(=2147′483′648).

> str(L)

Formal class ’dCHMsimpl’ [package "Matrix"] with 10 slots

..@ x : num [1:174396181] 1.71 2.16 1.4 1.32 2.29 ...

..@ p : int [1:1924269] 0 2 4 5 7 9 10 12 14 15 ...

..@ i : int [1:174396181] 0 2 1 2 2 3 5 4 5 5 ...

..@ nz : int [1:1924268] 2 2 1 2 2 1 2 2 1 2 ...

..@ nxt : int [1:1924270] 1 2 3 4 5 6 7 8 9 10 ...

..@ prv : int [1:1924270] 1924269 0 1 2 3 4 5 6 7 8 ...

..@ colcount: int [1:1924268] 2 2 1 2 2 1 2 2 1 2 ...

..@ perm : int [1:1924268] 1922843 1886519 134451 1921046 1893309 183471 1912388 1888309 196670 1922626 ...

..@ type : int [1:4] 2 1 0 1

..@ Dim : int [1:2] 1924268 1924268

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 17 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 18 / 45

Applications to models with simple, scalar random effects

For a model with simple, scalar random-effects terms only, the matrix
Σθ is block-diagonal in k blocks and the ith block is σ2

i Ini where ni
is the number of levels in the ith grouping factor.

The matrix Λθ is also block-diagonal with the ith block being θiIni ,
where θi = σi/σ.

Given the grouping factors for the model and a value of θ we produce
Uθ then Lθ, using Cholesky the first time then update.

To avoid recalculating we assign

flist a list of the grouping factors
nlev number of levels in each factor

Zt the transpose of the model matrix, Z
theta current value of θ
Lambda current Λθ

Ut transpose of Uθ = ZΛθ

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 19 / 45

Cholesky factor for the Penicillin model
> flist <- subset(Penicillin, select = c(plate, sample))
> Zt <- do.call(rBind, lapply(flist, as, "sparseMatrix"))
> (nlev <- sapply(flist, function(f) length(levels(factor(f)))))

plate sample

24 6

> theta <- c(1.2, 2.1)
> Lambda <- Diagonal(x = rep.int(theta, nlev))
> Ut <- crossprod(Lambda, Zt)
> str(L <- Cholesky(tcrossprod(Ut), LDL = FALSE, Imult = 1))

Formal class ’dCHMsimpl’ [package "Matrix"] with 10 slots

..@ x : num [1:189] 3.105 0.812 0.812 0.812 0.812 ...

..@ p : int [1:31] 0 7 14 21 28 35 42 49 56 63 ...

..@ i : int [1:189] 0 24 25 26 27 28 29 1 24 25 ...

..@ nz : int [1:30] 7 7 7 7 7 7 7 7 7 7 ...

..@ nxt : int [1:32] 1 2 3 4 5 6 7 8 9 10 ...

..@ prv : int [1:32] 31 0 1 2 3 4 5 6 7 8 ...

..@ colcount: int [1:30] 7 7 7 7 7 7 7 7 7 7 ...

..@ perm : int [1:30] 23 22 21 20 19 18 17 16 15 14 ...

..@ type : int [1:4] 2 1 0 1

..@ Dim : int [1:2] 30 30
Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 20 / 45

Images of UᵀU + I and L

U'U+I

5

10

15

20

25

5 10 15 20 25

L

5

10

15

20

25

5 10 15 20 25

−4

−2

0

2

4

6

8

10

Note that there are nonzeros in the lower right of L in positions that
are zero in the lower triangle of UᵀU + I. This is described as
“fill-in”.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 21 / 45

Reversing the order of the grouping factors

To show the effect of a fill-reducing permutation, we reverse the order
of the factors and calculate the Cholesky factor with and without a
fill-reducing permutation.

We evaluate nnzero (number of nonzeros) for L, from the original
factor order, and for Lnoperm and Lperm, the reversed factor order
without and with permutation

> Zt <- do.call(rBind, lapply(flist[2:1], as, "sparseMatrix"))
> Lambda <- Diagonal(x = rep.int(theta[2:1], nlev[2:1]))
> Ut <- crossprod(Lambda, Zt)
> Lnoperm <- Cholesky(tcrossprod(Ut), perm = FALSE, LDL = FALSE,
+ Imult = 1)
> Lperm <- Cholesky(tcrossprod(Ut), LDL = FALSE, Imult = 1)
> sapply(lapply(list(L, Lnoperm, Lperm), as, "sparseMatrix"),
+ nnzero)

[1] 189 450 204

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 22 / 45

Images of the reversed factor decompositions

Lnoperm

5

10

15

20

25

5 10 15 20 25

0

2

4

6

8

10

Lperm

5

10

15

20

25

5 10 15 20 25

−2

0

2

4

6

8

10

Without permutation, we get the worst possible fill-in. With a
fill-reducing permutation we get much less fill-in but still not as good
as the original factor order.
This is why the permutation is called “fill-reducing”, not
“fill-minimizing”. Getting the fill-minimizing permutation in the
general case is a very hard problem.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 23 / 45

Cholesky factor for the Pastes data

For the special case of nested grouping factors, such as in the Pastes
data, there is no fill-in, regardless of the permutation.

A permutation is nevertheless evaluated but it is a “post-ordering”
that puts the nonzeros near the diagonal.

> Zt <- do.call(rBind, lapply(flist <- subset(Pastes,
+ , c(sample, batch)), as, "sparseMatrix"))
> nlev <- sapply(flist, function(f) length(levels(factor(f))))
> theta <- c(0.4, 0.5)
> Lambda <- Diagonal(x = rep.int(theta, nlev))
> Ut <- crossprod(Lambda, Zt)
> L <- Cholesky(tcrossprod(Ut), LDL = FALSE, Imult = 1)
> str(L@perm)

int [1:40] 2 1 0 30 5 4 3 31 8 7 ...

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 24 / 45

Image of the factor for the Pastes data

U'U+I

10

20

30

10 20 30

L

10

20

30

10 20 30

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 25 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 26 / 45

Evaluating the likelihood for mixed models
From the joint density, fY,U (y,u), we obtain the likelihood

L(θ,β, σ2|y) =
∫
fY,U (y,u) du.

The function being integrated is an unnormalized Gaussian density.
Its integral can be determined from the value at the mode and the
variance-covariance matrix.
The Cholesky factor, Lθ, allows evaluation of ũθ,β from

P ᵀLθL
ᵀ
θP ũθ,β = Uᵀ

θ (y −Xβ)

The exponent of fY,U (y,u) can now be written

‖y −Xβ −Uθu‖2 + ‖u‖2 = r2(θ,β) + ‖Lᵀ
θP (u− ũθ,β)‖2.

where r2(θ,β) = ‖y −Xβ −Uũθ,β‖2 + ‖ũθ,β‖2.
The first term doesn’t depend on u and∫ exp

(
−‖LᵀP (u−ũθ,β)‖2

2σ2

)
(2πσ2)q/2

du =
1
|L|

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 27 / 45

Evaluating the likelihood (cont’d)

As is often the case, it is easiest to write the log-likelihood. On the
deviance scale (negative twice the log-likelihood)
`(θ,β, σ|y) = logL(θ,β, σ|y) becomes

−2`(θ,β, σ|y) = n log(2πσ2) +
r2(θ,β)
σ2

+ log(|Lθ|2)

We wish to minimize the deviance. Its dependence on σ is
straightforward. Given values of the other parameters, we can
evaluate the conditional estimate

σ̂2(θ,β) =
r2(θ,β)

n

producing the profiled deviance

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
However, an even greater simplification is possible because the
deviance depends on β only through r2(θ,β).

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 28 / 45

Profiling the deviance with respect to β

Because the deviance depends on β only through r2(θ,β) we can
obtain the conditional estimate, β̂θ, by extending the PLS problem to

r2(θ) = min
u,β

[
‖y −Xβ −Uθ u‖2 + ‖u‖2

]
with the solution satisfying the equations[

Uᵀ
θUθ + Iq Uᵀ

θX
XᵀUθ XᵀX

] [
ũθ
β̂θ

]
=
[
Uᵀ
θ y

Xᵀy.

]
The profiled deviance, which is a function of θ only, is

−2˜̀(θ) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ)

n

)]

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 29 / 45

Solving the extended PLS problem

For brevity we will no longer show the dependence of matrices and
vectors on the parameter θ.

As before we use the sparse Cholesky decomposition, with L and P
satisfying LLᵀ = P (UᵀU + I)P ᵀ and cu, the solution to
Lcu = PUᵀy.

We extend the decomposition with the q × p matrix RZX , the upper
triangular p× p matrix RX , and the p-vector cβ satisfying

LRZX = PUᵀX

Rᵀ
XRX = XᵀX −Rᵀ

ZXRZX

Rᵀ
Xcβ = Xᵀy −Rᵀ

ZXcu

so that [
P ᵀL 0
Rᵀ
ZX Rᵀ

X

] [
LᵀP RZX

0 RX

]
=
[
UᵀU + I UᵀX
XᵀU XᵀX

]
.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 30 / 45

Solving the extended PLS problem (cont’d)
Finally we solve

RX β̂θ = cβ

LᵀP ũθ,β = cu −RZX β̂θ

The profiled REML criterion also can be expressed simply. The
criterion is

LR(θ, σ2|y) =
∫
L(θ,β, σ2|y) dβ

The same change-of-variable technique for evaluating the integral
w.r.t. u as 1/ abs(|L|) produces 1/ abs(|RX |) here and removes
(2πσ2)p/2 from the denominator. On the deviance scale, the profiled
REML criterion is

−2˜̀
R(θ) = log(|L|2) + log(|Rx|2) + (n− p)

[
1 + log

(
2πr2(θ)
n− p

)]
These calculations can be expressed in a few lines of R code. Assume
the environment of setPars() contains y, X, Zt, REML, L, nlev and
XtX (XᵀX).

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 31 / 45

Code for evaluating the profiled deviance

1 s e tPa r s <− f u n c t i o n (t h e t a) {
s t o p i f n o t (i s . numeric (t h e t a) , l ength (t h e t a)== l ength (n l e v))

3 Ut <− crossprod (D iagona l (x=rep . i n t (theta , n l e v)) , Zt)
L <− update (L , Ut , mult = 1)

5 cu <− s o l v e (L , s o l v e (L , Ut %∗% y , sys = "P") , sys = "L")
RZX <− s o l v e (L , s o l v e (L , Ut %∗% X, sys = "P") , sys = "L")

7 RX <− cho l (XtX − crossprod (RZX))
cb <− s o l v e (t (RX) , crossprod (X, y)− crossprod (RZX, cu))

9 beta <− s o l v e (RX, cb)
u <− s o l v e (L , s o l v e (L , cu − RZX %∗% beta , sys="Lt") , sys="Pt")

11 f i t t e d <− as . vector (crossprod (Ut , u) + X %∗% beta)
p r s s <− sum(c (y − f i t t e d , as . vector (u)) ˆ2)

13 n <− l ength (f i t t e d) ; p <− nco l (RX)
i f (REML) r e t u r n (de t e rm inan t (L)$mod +

15 2 ∗ de t e rm inan t (RX)$mod +
(n−p) ∗ (1+ l og (2 ∗ p i ∗ p r s s /(n−p))))

17 de t e rm inan t (L)$mod + n ∗ (1 + l og (2 ∗ p i ∗ p r s s /n))
}

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 32 / 45

How lmer works

Essentially lmer takes its arguments and creates an environment
containing the model matrices, the response and the Cholesky factor.
The optimization of the profiled deviance or the profiled REML
criterion happens within this environment.

The creation of Λθ is somewhat more complex for models with
vector-valued random effects but not excessively so.

Some care is taken to avoid allocating storage for large objects during
each function evaluation. Many of the objects created in profDev are
updated in place within lmer.

Once the optimizer, nlminb, has converged some additional
information for the summary is calculated.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 33 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 34 / 45

Nonlinear and generalized linear mixed models

In a nonlinear mixed model (NMM) the conditional distribution,
(Y |U = u), is Gaussian but its mean depends on the linear predictor,
Uθ u+Xβ, through a nonlinear model function.

The conditional mode, ũθ,β, is the solution to a penalized nonlinear
least squares problem. The Laplace approximation to the profiled
deviance is

−2˜̀(θ,β|y) = log(|Lθ,β|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
where, as before, r2(θ,β) is the minimum penalized residual sum of
squares. The matrix Uθ,β determining Lθ,β is dµ

duᵀ

For generalized linear mixed models (GLMMs) the penalized least
squares problem to determine ũθ,β is replaced by a penalized
iteratively reweighted least squares problem.

All of the PLS problems require updating the decomposition for
revised numeric values.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 35 / 45

Outline

1 Model matrices with many columns

2 Applications to linear mixed models

3 The penalized least squares problem

4 Using the sparse Cholesky for mixed models

5 Evaluating the likelihood

6 More general model forms

7 Who’s the best liked prof at ETH?

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 36 / 45

Who’s the best liked prof at ETH?

Private donation for encouraging excellent teaching at ETH

Student union of ETH Zurich organizes survey to award prizes:
Best lecturer — of ETH, and of each of the 15 departments.

Smart Web-interface for survey: Each student sees the names of
his/her professors from the last 4 semesters and all the lectures that
applied.

ratings in {1, 2, 3, 4, 5}.
high response rate

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 37 / 45

Who’s the best prof — data

> str(d.eth)

’data.frame’: 73421 obs. of 7 variables:

$ s : Factor w/ 2972 levels "1","2","3","4",..: 1 1 1 1 2 2 3 3 3 3 ...

$ d : Factor w/ 1128 levels "1","6","7","8",..: 525 560 832 1068 62 406 3 6 19 75 ...

$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1 1 1 ...

$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2 1 2 2 1 1 1 1 1 1 ...

$ service: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 1 ...

$ dept : Factor w/ 15 levels "5","12","6","11",..: 15 5 15 12 2 2 14 3 3 3 ...

$ y : int 5 2 5 3 2 4 4 5 5 4 ...

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 38 / 45

Modelling the ETH teacher ratings

Model: The rating depends on

students (s) (rating subjectively)

teacher (d) – main interest

department (dept) [[obfuscated]]

“service” lecture or “own department student”, (service: 0/1).

semester of student at time of rating (studage∈ {2, 4, 6, 8}).

how many semesters back was the lecture (lectage).

Main question: Who’s the best prof?
Hence, for “political” reasons, want d as a fixed effect.

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 39 / 45

Model for ETH teacher ratings
Want d (“teacher ID”, 1128 levels) as fixed effect.
Further fixed effects studage (4 l.), lectage (6 l.), maybe service
(2 l.), dept (15 l.).
Use the new sparse.model.matrix() 1:

> X <- sparse.model.matrix(~d + dept * service + studage +
+ lectage, data = d.eth)
> dim(X)

[1] 73421 1165
> object.size(X)/(ncol(X) * nrow(X) * 8)

[1] 0.021
> str(X)

Formal class ’dgCMatrix’ [package "Matrix"] with 6 slots

..@ i : int [1:867068] 0 1 2 3 4 5 6 7 8 9 ...

..@ p : int [1:1166] 0 73421 73452 73485 73544 73574 73613 73641 73720 73925 ...

..@ Dim : int [1:2] 73421 1165

..@ Dimnames:List of 2

.. ..$: chr [1:73421] "1" "2" "3" "4" ...

.. ..$: chr [1:1165] "(Intercept)" "d6" "d7" "d8" ...

..@ x : num [1:867068] 1 1 1 1 1 1 1 1 1 1 ...

..@ factors : list()
1in next version of Matrix

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 40 / 45

Large fixed effect (ETH teacher)

Now, in
y = Xβ +Zb+ ε

have X as n× 1165, Z roughly n× 5000, n = 73′421.

using “developmental” lmer2(..., sparseX = TRUE)
with sparse X (fixed effects) in addition to sparse Z (random effects)
:
> fm0 <- lmer2(y ~ d + dept * service + studage + lectage +
+ (1 | s), data = d.eth, sparseX = TRUE)
Error ... Cholmod error ’not positive definite’ at file:../Cholesky/......

indeed, fixed-effects X is rank-deficient, whereas making it random,
regularizes

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 41 / 45

14 columns would have to be eliminated to render it non-singular:
> if (!exists("SVD.XX")) SVD.XX <- svd(crossprod(X), 0,
+ 0)$d
> table(SVD.XX < 1e-05 * median(SVD.XX))

FALSE TRUE

1151 14

> plot(SVD.XX, log = "y")

●
●●●

●

●●●●●●●●●●●●●
●

0 200 400 600 800 1000 1200

1e
−

15
1e

−
05

1e
+

05

Index

S
V

D
.X

X

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 42 / 45

Finding: Do not use ’dept’ as that is entirely explained by ’d’
Then, the corresponding X has full rank (p = 1137)

> fm1 <- lmer2(y ~ d + service + studage + lectage + (1 |
+ s), data = d.eth, sparseX = TRUE)
now call the minimizer -- on here one-dimensional:
str(optimize(fm1 @ setPars, c(0,5)))

List of 2

$ minimum : num 0.278

$ objective: num 235716

beta.fix <- get("beta", envir = lme4a:::env(fm1)) # to keep ..
ls.str(lme4a:::env(fm1))

beta : Named num [1:1137] 3.807 -1.102 0.164 -1.272 -0.36 ...

contrasts : NULL

control : list()

data : ’data.frame’: 73421 obs. of 7 variables:

$ s : Factor w/ 2972 levels "1","2","3","4",..: 1 1 1 1 2 2 3 3 3 3 ...

$ d : Factor w/ 1128 levels "1","6","7","8",..: 525 560 832 1068 62 406 3 6 19 75 ...

$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1 1 1 ...

$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2 1 2 2 1 1 1 1 1 1 ...

$ service: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 1 ...

$ dept : Factor w/ 15 levels "5","12","6","11",..: 15 5 15 12 2 2 14 3 3 3 ...

$ y : int 5 2 5 3 2 4 4 5 5 4 ...

etastart : <missing>

family : function (link = "identity")

fitted : num [1:73421] 3.14 3.16 3.4 3.1 3.33 ...

flist : List of 1

$ s: Factor w/ 2972 levels "1","2","3","4",..: 1 1 1 1 2 2 3 3 3 3 ...

formula : Class ’formula’ length 3 y ~ d + service + studage + lectage + (1 | s)

fr : ’data.frame’: 73421 obs. of 6 variables:

$ y : int 5 2 5 3 2 4 4 5 5 4 ...

$ d : Factor w/ 1128 levels "1","6","7","8",..: 525 560 832 1068 62 406 3 6 19 75 ...

$ service: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 1 ...

$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1 1 1 ...

$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2 1 2 2 1 1 1 1 1 1 ...

$ s : Factor w/ 2972 levels "1","2","3","4",..: 1 1 1 1 2 2 3 3 3 3 ...

fr.form : Class ’formula’ length 3 y ~ d + service + studage + lectage + (1 + s)

L : Formal class ’dCHMsimpl’ [package "Matrix"] with 10 slots

ldL2 : num 2957

ldRX2 : num 4167

.....................

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 43 / 45

’d’ as random effect: Regularization

We rather prefer some bias in order to reduce variance:
make ’d’ a random effect:
Advantage: Can easily use dept as a fixed effect:
> fm2 <- lmer(y ~ service + studage + lectage + (1 | d) +
+ (1 | s), data = d.eth)
> fm2D <- lmer(y ~ dept + service + studage + lectage +
+ (1 | d) + (1 | s), data = d.eth)
> beta.Fix <- beta.fix["(Intercept)"] + c(0, beta.fix[2:1128])
> b.random <- fixef(fm2)["(Intercept)"] + ranef(fm2)$d[,
+ 1]

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 44 / 45

Shrinkage of the random effects relative to fixed effects
shrinkage of random effects

Fixed−effects estimate

C
on

di
tio

na
l m

ea
n

of
 r

an
do

m
 e

ffe
ct

s

2.0

2.5

3.0

3.5

4.0

4.5

2 3 4

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Doug Bates, Martin Maechler (R Core) Sparse model matrices DSC2009, Copenhagen 45 / 45

	Model matrices with many columns
	Applications to linear mixed models
	The penalized least squares problem
	Using the sparse Cholesky for mixed models
	Evaluating the likelihood
	More general model forms
	Who's the best liked prof at ETH?

