Sparse Matrices in package Matrix and applications

Martin Maechler and Douglas Bates

Seminar für Statistik ETH Zurich Switzerland	
Department of Statistics	

useR! 2009, Rennes
July 10, 2009

Introduction

- Matrix: the movie
- Matrix: the R package :
- Package Matrix: a recommended R package since R 2.9.0
- Infrastructure for other packages for several years, notably lme4 ${ }^{1}$
- CRAN nowadays lists direct "reverse dependencies":

Outline

Introduction to Matrix and Sparse Matrices
Sparse Matrices in package Matrix
Matrix: Goals
3D space of Matrix classes

Applications in Spatial Statistics
Regression with Spatially Dependent Errors: SAR(1)

Application - Mixed Modelling (RE)ML in R

Who's the best liked prof at ETH?

On June 26, 2008 (> one year ago), Matrix was not yet recommended, and had the following CRAN dependency graph:

i.e., $14+1$ directly dependent packages.

Dependencies on Matrix - 2009-07
Today, quite a few more packages depend on Matrix explicitly: CRAN \rightarrow Packages \rightarrow Matrix displays the following
http://cran.r-project.org/web/packages/Matrix/

Matrix: Sparse and Dense Matrix Classes and Methods

Classes and methods for dense and sparse matrices and operations on them using Lapack and SuiteSparse.

Version: 0.999375-29
Priority: recommended
Depends: R ($\geq 2.9 .0$), stats, methods, utils, lattice
Imports: graphics, lattice, grid, stats
Enhances: graph, SparseM
Author: Douglas Bates and Martin Maechler

Reverse dependencies:

Reverse FAir, FTICRMS, GOSim, MCMCgImm, Metabonomic, arm, arules, gimnet, klin, depends: languageR, Ime 4 , mlmRev, pedigreemm, qgen, ramps, spdep, surveyNG, svcm, systemfit, tpr, tsDyn

Reverse
http://cran.r-project.org/web/packages/Matrix/:

Matrix: Sparse and Dense Matrix Classes and Methods

Classes and methods for dense and sparse matrices and operations on them using Lapack and SuiteSparse.

Version: 0.999375-29

Priority: recommended
Depends: R ($\geq 2.9 .0$), stats, methods, utils, lattice
Imports: graphics, lattice, grid, stats
Enhances: graph, SparseM
Author: Douglas Bates and Martin Maechler

Reverse dependencies:

Reverse depends:

Reverse

imports:
Reverse
suggests:
Reverse
enhances:

FAiR, FTICRMS, GOSim, MCMCgImm, Metabonomic, arm, arules, glmnet, klin, languageR, Ime4, mimRev, pedigreemm, qgen, ramps, spdep, survey $\overline{\mathrm{GG}}$, svem, systemfit, tpr, tsDyn
arules, cba
R.matlab, RSiena, Rcsdp, blockmodeling, classGraph, e1071, gmodels, igraph, rattle, spam, survey

Rcplex, Resdp

Dependencies on Matrix - 2009-07 - Summary

1. After one year, we have 22 (up from 15) packages depending on Matrix explicitly, plus another 12 "suggest" or "enhance" it.
2. Notably glmnet, Trevor Hastie's favorite in yesterday's keynote.
3. Most important one: Ime4 and its dependencies

Intro to Sparse Matrices in R package Matrix

- The R Package Matrix contains dozens of matrix classes and hundreds of method definitions.
- Has sub-hierarchies of denseMatrix and sparseMatrix.
- Very basic intro in some of sparse matrices:

simple example - Triplet form

simple example - 3 -
The most obvious way to store a sparse matrix is the so called
"Triplet" form; (virtual class TsparseMatrix in Matrix):
> A <- spMatrix ($10,20, i=c(1,3: 8)$,
$+\quad j=c(2,9,6: 10)$, $+\quad \mathrm{x}=7 *(1: 7))$
>A \# a "dgTMatrix"
10×20 sparse Matrix of class "dgTMatrix"

Less didactical, slighly more recommended: A1 <sparseMatrix (.....)
> A >= 20 \# -> logical sparse; nice show() method
10 x 20 sparse Matrix of class "lgTMatrix"

simple example - 2 -

$>\operatorname{str}(A)$ \# note that *internally* 0 -based indices (i,j) are used
Formal class 'dgTMatrix' [package "Matrix"] with 6 slots

sparse compressed form

Triplet representation: easy for us humans, but can be both made smaller and more efficient for (column-access heavy) operations: The "column compressed" sparse representation:

```
>Ac<- as(t(A), "CsparseMatrix")
>str(Ac)
Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
    ..@ i : int [1:30] 1 13 14 15 15 8 14 14 15 16 5 15 ...
    .@ p : int [1:11] 0 1 4 8 8 12 17 23 29 30 30
    ..@ Dim : int [1:2] 20 10
    ..@ Dimnames:List of 2
    .. ..$ : NULL
    .. ..$ : NULL
    ..@ x : num [1:30] 7 30 60 90 14 30 60 90 21 30
    ..@ factors : list()
```

Column index slot j
replaced by a column pointer slot p .

R Package Matrix: Compelling reasons for S4

Goals of Matrix package

1. Classes for Matrices: well-defined inheritance hierarchies:
1.1 Content kind: Classes dMatrix, 1Matrix, nMatrix, (iMatrix, zMatrix) for contents of double, logical, pattern (and not yet integer and complex) Matrices, where nMatrix only stores the location of non-zero matrix entries (where as logical Matrices can also have NA entries)
1.2 sparsity: denseMatrix, sparseMatrix
1.3 structure: general, triangular, symmetric, diagonal Matrices
2. Inheritance: Visualisation via graphs
3. Multiple Inheritance (of classes)
4. Multiple Dispatch (of methods)
5. interface to LAPACK $=$ state-of-the-art numerical linear algebra for dense matrices

- making use of special structure for symmetric or triangular matrices (e.g. when solving linear systems)
- setting and keep such properties alows more optimized code in these cases.

2. Sparse matrices for large designs: regression, mixed models, etc
3. [omitted in this talk]

Hence, quite a few different classes for matrices.

Multiple Dispatch in S4 for Matrix operations

Methods for "Matrix"-matrices: Often 2 matrices involved..

1. $\mathrm{x} \%$ \% y
2. crossprod $(x, y)-x^{\top} y$
3. tcrossprod $(x, y)-x y^{\top}$
4. $\mathrm{x}+\mathrm{y}$ - "Arith" group methods
5. $\mathrm{x}<=\mathrm{y}$ - "Compare" group methods and many many more.
$\mathrm{S} 4 \gg \mathrm{~S} 3$

- S4 - multiple dispatch: Find method according to classes of both (or more) arguments.
- S3 - single dispatch: e.g., "ops.Matrix": only first argument counts.

```
many Matrix classes . .
    > library(Matrix)
    > length(allCl <- getClasses("package:Matrix"))
    [1] }9
    > ## Those called "...Matrix" :
    > length(M.Cl <- grep("Matrix$",allCl, value = TRUE))
    [1] }7
    i.e., many ..., each inheriting from root class "Matrix"
    > str(subs <- showExtends(getClassDef("Matrix")@subclasses,
    + printTo=FALSE))
    List of 2
    $ what: chr [1:76] "compMatrix" "triangularMatrix" "dMatrix" "iMatrix"
    $ how : chr [1:76] "directly" "directly" "directly" "directly" ...
    > ## even more... : All those above and these in addition:
    > subs$what[ ! (subs$what %in% M.Cl)]
```

[1] "Cholesky" "pCholesky" "BunchKaufman" "pBunchKaufman"

3-way Partitioning of "Matrix space"

Logical organization of our Matrices: Three (3) main "class classifications" for our Matrices, i.e., three "orthogonal" partitions of "Matrix space", and every Matrix object's class corresponds to an intersection of these three partitions.
i.e., in R 's S4 class system: We have three independent inheritence schemes for every Matrix, and each such Matrix class is simply defined to contain three virtual classes (one from each partitioning scheme), e.g,
setClass("dgCMatrix",
contains= c("CsparseMatrix", "dsparseMatrix", "generalMatr validity= function(..))

3D space of Matrix classes

three-way partitioning of Matrix classes visualized in 3D space, dropping the final Matrix, e.g., "d" instead of "dMatrix":
> d1 <- c("d", "1", "n")
> d2 <- c("general", "symmetric", "triangular", "diagonal")
> d3 <- c("dense", c("Csparse", "Tsparse", "Rsparse"))
> clGrid <- expand.grid(dim1 $=\operatorname{d} 1, \operatorname{dim} 2=d 2, \operatorname{dim} 3=d 3$, KEEP.OU > clGr <- data.matrix(clGrid)
> library (scatterplot3d)
used for visualization:

3-fold classification - Matrix naming scheme

1. "Actual" classes: Matrix objects are of those; the above "points in 3D space"
2. Virtual classes: e.g. the above coordinate axes categories.

Superclasses of actual ones
cannot have objects of, but -importantly- many methods for these virtual classes.
Actual classes follow a "simple" terse naming convention:
> $\operatorname{str}($ M3cl <- grep("^...Matrix\$",M.Cl, value $=$ TRUE))
chr [1:47] "corMatrix" "ddiMatrix" "dgCMatrix" "dgeMatrix" ...

```
> substring(M3cl, 1,3)
```

[1] "cor" "ddi" "dgC" "dge" "dgR" "dgT" "dpo" "dpp" "dsC" "dsp" "dsR"
[13] "dsy" "dtC" "dtp" "dtr" "dtR" "dtT" "ldi" "lgC" "lge" "lgR" "lgT"
[25] "lsp" "lsR" "lsT" "lsy" "ltC" "ltp" "ltr" "ltR" "ltT" "ngC" "nge"
[37] "ngT" "nsC" "nsp" "nsR" "nsT" "nsy" "ntC" "ntp" "ntr" "ntR" "ntT"
> M3cl <- M3cl[M3cl != "corMatrix"] \# corMatrix not desired in f

3D space of Matrix classes
Matrix 3d space: filled (3)

Matrix 3d space: filled (2)
Matrix 3d space: filled (4)

Spatially Dependent Errors - SAR(1)

Regression with spatially dependent errors; observations at locations $i, \quad i=1, \ldots, n, n$ in the thousands, possibly 100 '000s.
Simultaneous Autoregression

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{u} \quad \text { where } \boldsymbol{u}=\lambda \mathbf{W} \boldsymbol{u}+\boldsymbol{\epsilon} \tag{1}
\end{equation*}
$$

- W : matrix $\left(W_{i j}\right)$ of "distance-based contiguities" of locations i and $j\left(W_{i i} \equiv 0\right)$.
- λ : $\operatorname{SAR}(1)$ parameter; estimate via MLE, ($\boldsymbol{\beta}$ profiled out).
- $\boldsymbol{u} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2}(\boldsymbol{I}-\lambda \mathbf{W})^{-1}\left(\boldsymbol{I}-\lambda \mathbf{W}^{\top}\right)^{-1}\right)$
- For log likelihood, need to compute determinant $|\boldsymbol{I}-\lambda \mathbf{W}|=(-\lambda)^{n}\left|-\mathbf{W}+\frac{1}{\lambda} \boldsymbol{I}\right|$ for many λ.

Compute Cholesky / Determinant of $\boldsymbol{A}+\rho \boldsymbol{I}$ for large sparse symmetric \boldsymbol{A} :
\Longrightarrow Fast Cholesky Update

SAR(1) - fast Likelihood from Cholesky Update

Data provided by Roger Bivand, as a relevant test case:
> data(USCounties, package="Matrix")
> dim(USCounties)
[1] 31113111
> ($\mathrm{n}<-\mathrm{ncol}$ (USCounties))
[1] 3111
> IM <- .symDiagonal(n)
> nWC <- -USCounties
$>$ set.seed(1)
> rho <- sort(runif(50, 0, 1)) \#\# rho = 1 / lambda and now compute $\operatorname{determinant}(A)=:|\boldsymbol{A}|$

$$
\begin{equation*}
|\boldsymbol{I}-\lambda \mathbf{W}| \propto\left|-\mathbf{W}+\frac{1}{\lambda} \boldsymbol{I}\right| \quad \text { for many } \lambda^{\prime} s \tag{2}
\end{equation*}
$$

SAR(1) - Cholesky Update - 2 -
> \#\# Determinant : Direct Computation
> system.time(MJ <- sapply(rho, function(x)
$+$
determinant(IM $-x *$ USCounties, logarithm $=$ TRUE)\$modu
user system elapsed
$3.640 \quad 0.124 \quad 4.062$
> \#\# Determinant : "high-level" Update of the Cholesky \{Simplici
> C1 <- Cholesky (nWC, Imult = 2)
> system.time(MJ1 <- n * $\log (r h o)+$
$+\quad$ sapply(rho, function $(x) c(d e t e r m i n a n t(u p d a t e(C 1, n W C, 1 / x))$
user system elapsed
$0.692 \quad 0.012 \quad 0.746$
> stopifnot(all.equal(MJ, MJ1))
C2 <- Cholesky (nWC, super = TRUE, Imult = 2) \#\# <<-- "Supernod system.time(MJ2 <- n * log(rho) +
$+\quad$ sapply(rho, function (x) $c($ determinant (update (C2, nWC, $1 / x)$)
user system elapsed
$\begin{array}{lll}0.760 & 0.060 & 0.888\end{array}$

SAR(1) - Cholesky Update - 3 -
> stopifnot(all.equal(MJ, MJ2))
> \#\# Determinant : "low-level" Update of the Cholesky \{Simplicia > system.time(MJ3 <- n*log(rho) + Matrix:::ldetL2up(C1, nWC,1/rh
user system elapsed
$0.400 \quad 0.008 \quad 0.425$
> stopifnot(all.equal(MJ, MJ3))
> system.time(MJ4 <- n*log(rho) + Matrix:::ldetL2up(C2, nWC,1/rh user system elapsed
$0.404 \quad 0.008 \quad 0.416$
> stopifnot(all.equal(MJ, MJ4))
Findings:

1. Using Cholesky update: order of magnitude faster
2. Simplicial (super= FALSE) \leftrightarrow Supernodal (super= TRUE) : no big difference here
3. An even faster method for $\operatorname{Det}(\operatorname{Chol}()$.$) yields another 50 \%$ speed.

Mixed Modelling - (RE)ML Estimation in pure R

In (linear) mixed effects, the evaluation of the (RE) likelihood or equivalently deviance, needs repeated Cholesky decompositions of

$$
\begin{equation*}
\boldsymbol{U}_{\theta} \boldsymbol{U}_{\theta}^{\top}+\boldsymbol{I} \tag{3}
\end{equation*}
$$

for many θ values ($=$ the relative variance components) and (often very large), very sparse matrix \boldsymbol{U}_{θ} where only the non-zeros of \boldsymbol{U} depend on θ, i.e., the sparsity pattern is given (by the observational design).
Sophisticated (fill-reducing) Cholesky done in two phases:

1. "symbolic" decomposition: Determine the non-zero entries of

$$
L\left(L L^{\top}=U U^{\top}+I\right),
$$

2. numeric phase: compute these entries.

Phase 1: typically takes much longer; only needs to happen once.
Phase 2: "update the Cholesky Factorization"

Who's the best prof - data

```
> md <- within(read.csv("~/R/MM/Pkg-ex/lme4/puma-lmertest.csv"),
```

> md <- within(read.csv("~/R/MM/Pkg-ex/lme4/puma-lmertest.csv"),

+ s <- factor(s) \# Student_ID
+ s <- factor(s) \# Student_ID
+ d <- factor(d) \# Lecturer_ID ("d"ozentIn)
+ d <- factor(d) \# Lecturer_ID ("d"ozentIn)
+ dept <- factor(dept)
+ dept <- factor(dept)
+ service <- factor(service)
+ service <- factor(service)
+ studage <- ordered(studage)\#\# *ordered* factors
+ studage <- ordered(studage)\#\# *ordered* factors
+ lectage <- ordered(lectage) })
+ lectage <- ordered(lectage) })
str(md)
str(md)
'data.frame': }73421\mathrm{ obs. of }7\mathrm{ variables:
'data.frame': }73421\mathrm{ obs. of }7\mathrm{ variables:
\$ s : Factor w/ 2972 levels "1","2","3","4",···: 1 1 1 1 2 2 3 3 3
\$ s : Factor w/ 2972 levels "1","2","3","4",···: 1 1 1 1 2 2 3 3 3
\$ d : Factor w/ 1128 levels "1","6","7","8",..: 525 560 832 1068
\$ d : Factor w/ 1128 levels "1","6","7","8",..: 525 560 832 1068
\$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1 1 1 1 1 1
\$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1 1 1 1 1 1
\$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2 1 2 2 1 1 1 1
\$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2 1 2 2 1 1 1 1
\$ service: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 1 2 1 1 1
\$ service: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 1 2 1 1 1
\$ dept : Factor w/ 15 levels "1","2","3","4",···: 15 5 15 12 2 2 14 3
\$ dept : Factor w/ 15 levels "1","2","3","4",···: 15 5 15 12 2 2 14 3
\$y : int 5 2 5 3 2 4 4 5 5 4 ...
\$y : int 5 2 5 3 2 4 4 5 5 4 ...
* Factor w/ 1128 levels 1", , , ,N,...525 560 832 1068

```
* Factor w/ 1128 levels 1", , , ,N,...525 560 832 1068
```


Who's the best liked prof at ETH?

- Private donation for encouraging excellent teaching at ETH
- Student union of ETH Zurich organizes survey to award prizes: Best lecturer - of ETH, and of each of the 14 departments.
- Smart Web-interface for survey: Each student sees the names of his/her professors from the last 4 semesters and all the lectures that applied.
- ratings in $\{1,2,3,4,5\}$.
- high response rate

Modelling the ETH teacher ratings

Model: The rating depends on

- students (s) (rating subjectively)
- teacher (d) - main interest
- department (dept)
- "service" lecture or "own department student", (service: 0/1).
- semester of student at time of rating (studage $\in\{2,4,6,8\}$).
- how many semesters back was the lecture (lectage).

Main question: Who's the best prof?
Hence, for "political" reasons, want d as a fixed effect.

Model for ETH teacher ratings

Want d ("teacher_ID", ≈ 1000 levels) as fixed effect.
Consequently, in

$$
y=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{b}+\boldsymbol{\epsilon}
$$

have X as $n \times 1000$ (roughly), Z as $n \times 5000, n \approx 70^{\prime} 000$.
$>f m 0<-1$ mer2(y ~ $\mathrm{d}+\mathrm{dept*service}+$ studage + lectage $+(1 \mid \mathrm{s})$,
$+\quad$ data $=m d$, sparse $X=$ TRUE $)$
sparseX = TRUE: sparse \boldsymbol{X} (fixed effects) in addition to the indispensably sparse \boldsymbol{Z} (random effects).
Unfortunately: Here, the above "sparseX - Imer" ends in Error ... Cholmod error 'not positive definite' at file:../Cholesky/... Good News: Newly in Matrix:
sparse.model.matrix()

- which 1 mer() can use,
- or you can use for "truly sparse" least squares (i.e. no intermediately dense design matrix)
- something we plan to provide in Matrix 1.0-0.

Summary

- Recommended R package "Matrix"
- Sparse Matrices: in increasing number of applications
- S4 classes and methods are the natural implementation tools
- Ime4 is going to contain an alternative "pure R" version of ML and REML, you can pass to nlminb() (or optim() if you must :-). UseRs can easily extend these R functions to more flexible models or algorithms.
- Matrix 1.0-0

1. will happen
2. will contain sparse.model.matrix()
3. will contain truly sparse $\operatorname{lm}(*$, sparse=TRUE)

That's all folks - with thanks for your attention!

